The influence of nitrogen and phosphorus concentrations on the allelopathic effects of *Festuca rubra* ssp. *commutata*

Dominic P. Petrella, Florence Sessoms, Jon M. Trappe, and Eric Watkins Department of Horticultural Science, University of Minnesota, St. Paul MN

Question

Fine fescues require lower amounts of fertilizer, could reduced nutrient levels alter allelopathic effects?

<u>Objective:</u> Determine if nitrogen and phosphorus alter allelopathic effects and allelochemical accumulation in Chewings fescue

Allelopathy in fine fescues

- Allelopathy is the synthesis and release of specialized, phytotoxic, metabolites into the environment
- Fine fescues are allelopathic (Bertin et al., 2009)
- Allelopathy is potentially due to L-*m*-tyrosine (Bertin et al., 2007)
 Very potent
 - "Large" quantities exuded by roots of Chewings fescue cv. Intrigue'
 - Direct observations of allelopathic fine fescues are still lacking
- L-m-tyrosine is rapidly degraded by microbes (Kaur et al., 2009)
- Environmental conditions alter allelopathic effects

L-*m*-tyrosine in Chewings fescue roots

-m-tyrosine is the most abundant free amino acid in Chewings

What is the direct impact of growing fescues near weeds?

- After L-m-tyrosine discovery, little attention was paid to the direct effects of growing fescue near weeds
 - Are there other important metabolites?
 Does neighbor competition influence allelopathy?
- Would nitrogen and phosphorus influence allelopathic interactions?
- Direct effects are difficult to evaluate
 Allelonathy and competition co-exist
- Allelopathy and competition co-exist
 We are reducing competitive effects through manipulating
 nutrient concentrations
- Evaluate morphological changes attributed specifically to allelopathy

Nutrient fertility and L-m-tyrosine effects

root

Zelativ

- Would higher N or P allow weeds to overcome
- L-m-tyrosine effects? Arabidopsis thaliana 'Col-0'
- 0 or 0.37 μM L-m-tyrosine (IC_{E0} = 0.249 μM)
- · Five nutrient treatments on agar plates (1) 0.25x, (2) 0.50x, or (3) 100x N (15 mM N) + 100 μM KH₂PO₄ (4) 0.50x N + 500 μM KH₂PO₄ (5) 0.50x N + 2,000 μM KH₂PO₄
- Measured root growth for 7 d post germination · L-m-tyrosine significantly reduced AT root, no
- matter nutrient concentration
- More N did not reduce severity
- Increased phosphorus compensated Effects of L-m-tyrosine could not be over more nutrients

Chewings fescue - Arabidopsis direct effects

Fertility treatments evaluated:

- 0.25x N + 100 μM KH₂PO₄ 0.50x N + 100 μM KH₂PO₄ 2. з
- 0.25x N + 100 μM KH₂PO₄ 1.00x N + 100 μM KH₂PO₄ 0.25x N + 500 μM KH₂PO₄ 0.50x N + 500 μM KH₂PO₄
- 6. 1.00x N + 500 µM KH,PO

Treatment structure

- Arabidopsis seedlings (AT) alone (decreased neighbor interference) Control Arabidopsis seedlings with older Arabidopsis (AT-AT)
- 2. 3 Arabidopsis seedlings with Chewings fescue cv. 'Intrigue'
- (FF-AT)
- 6 plates per treatment with 5 AT seedlings per plate
- Measured root growth for 9 d post AT germination Experiments have not been repeated

Chewings fescue - Arabidopsis direct effects

Fertility treatments evaluated:

- 1. 0.25x N + 100 µM KH₂PO₄ 2.
- 0.50x N + 100 μM KH₂PO₄ 1.00x N + 100 μM KH₂PO₄ 0.25x N + 100 μM KH₂PO₄ 0.25x N + 500 μM KH₂PO₄
- 1.00x N + 500 μM KH₂PO

- Treatment structure
 1. Arabidopsis seedlings (AT) alone (decreased neighbor interference) - Control
 - 2. Arabidopsis seedlings with older Arabidopsis (AT-AT)

Intraspecific effects what does competition look like?

Arabidopsis morphological changes

- · Changes in the root to shoot ratio (R:S) can indicate nutrient stress me
- Nitrogen and phosphorus stress increase R:S Roots are larger relative to sho Low N and P decreased root and shoot
- growth similarly to AT only 0.50x + 100 P slightly increased R:S, indicating
- increased nutrient stress with unbalanced N and P
- Full N with low P was similar, but FF-AT was quite reduced
- Higher phosphorous treatments were similar
 Full N + increased P reduced R:S of FF-AT
- R:S data indicate potentially insignificant nutrient competition with FF plants

Conclusions and future steps

- Methods for L-m-tyrosine quantification were improved
- · Need to determine if concentrations are changing under various nutrient treatments - Moderate amounts of nitrogen (7.5 mM N) and moderate phosphorus (500 $\mu\text{M})$
- Increase allelopathic effects while minimizing competitive effects
 Use shoot derived Arabidopsis N and P starvation genetic markers to accurately determine levels of nutrient competition
- What impact do even higher levels of phosphorus have on the growth of Arabidopsis with Chewings fescue?
- · Measure lateral root length as another means of morphological assessment
- · Abnormal agravitropism indicates allelopathy over competition
- These effects are not due to L-m-tyrosine and may be due to another metabolite or synergy with another metabolite

Acknowledgements

 This project was supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Specialty Crops Research Initiative under award number 2017-51181-27222 USDA United States National Instit Department of Arriculture Agriculture

Department of Horticultural Science

Adrian Hegeman Jerry Cohen Javanti Suresh

Turfgrass science research groupBrian HorganGarett Heineck Brian Horgan Andy Hollman Kris Moncada Chase Straw

Dan Sandor

Nicole Mihelich Yinjie Qiu Dominic Christenson David Herrera Ryan Schwab

This agravitropism is not due to L-m-tyrosine