Identifying and confirming natural weed suppression in fine fescues

Jon M. Trappe, Florence Sessoms, Dominic P. Petrella, Eric Watkins, and Aaron J. Patton

Crabgrass emergence 6/1/18, St. Paul, MN	
trong creeping red fescue hewings fescue]

• Strong trends by species

• Negatively (-0.32) related to FF plug area (*p*-value=0.0034)

Background on allelopathy in fine fescues

- Fine fescues have been reported to exhibit natural weed suppression (Bertin et al., 2009; Trappe et al., 2017)
- L-*m*-Tyrosine suspected to contribute to weed suppression (Bertin et al., 2007; Petrella et al., 2018)
- Allelopathy is the injurious effect of one plant on another via the release of chemical compounds into the environment
- Allelopathy has potential in turfgrass breeding for selecting cultivars that require fewer pesticides

Field screening experiments – 2018 Results

Biointerference experiment

Objectives:

- Validate our observations of crabgrass suppression in the field
- Examine competitiveness of both crabgrass and select fine fescue accessions in controlled environment

6 fine fescue accessions

	 • 58440 (high suppression)
Chewings	 • 54260 and 54270 (low suppression)
fescue	 'Radar' (high suppression)
strong creeping red fescue	 • 'Intrigue' (med suppression) -[• 58660 (high suppression)

Understanding crabgrass seedling suppression

Biointerference experiment – Wrap-up

- Shoot growth alone does not fully explain differences in crabgrass seedling response
- Root biomass may be a better predictor of weed suppression
- L-m-Tyrosine is in much higher concentrations in the roots than shoots (Petrella et al., 2018)

Field and growth chamber experiment

- FF genotypes negatively affected crabgrass biomass differently
 - Overall reduction in crabgrass biomass in field and growth chamber
 - Reduced germination and emergence of crabgrass seedlings in field
- Many similarities in crabgrass suppression between
- field and growth chamber experiments
- 58660 and 58840 highly suppressive
- 54260 and 54270 somewhat suppressive

Biointerference experiment - Results

- Variation within and across FF species – their effect on crabgrass and vice versa
- 58660 and 58840 are the two FF accessions consistently negatively affecting crabgrass seedlings
- How they affect and are affected by crabgrass seems to differ
 Total number of crabgrass leaves,
- tillers, and seedheads affected by FF accession
- Chlorophyll content was not affected by FF treatment

Future work on allelopathy/weed suppression

- More work needs to be done to separate competition for resources from allelopathy
- Improve screening techniques to speed selection of potential allelopathic genotypes
- Next steps?
 - Hydroponics experiment to reduce competition as a factor
 Confirm its L-*m*-Tyrosine affecting crabgrass plants via FF root
 - exudates
 - Screen weed suppressive fine fescue accessions against multiple weed species

More work on Allelopathy to see in Baltimore

 308-4, Influence of nitrogen and phosphorus concentrations on the allelopathic effects of Festuca rubra ssp. Commutata. Wed. 2:20 pm, BCC 325. Non-interferred biomass of individual plants over time

Acknowledgements

This project was supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Specialty Crops Research Initiative under award number 2017-51181-27222

Andrew Hollman

- Quincy Law
- Tengo Kupatadze
- Geoff Schortgen
- Ryan Schwab
- Minh-Tu Van

USDA

